Fernando Maymó

CURSO DE RADIO

POR CORREO
Con el título de Colección de Esquemas recibirá Ud. una serie de Cuadernos con Circuitos que comprenden desde el más sencillo aparato de galena al más complicado superheterodino. Todos ellos son modelos industriales, es decir, modelos que existen en el mercado español. Muchos son de marcas conocidas americanas y europeas, y muchos otros de construcción nacional, cuyos circuitos básicos o patrones debe Ud. conocer.

Esta importante colección, no sólo le servirá como obra de consulta en el caso de reparar algún receptor cuyo esquema se encuestre en ella, sino también para el examen y comparación de los circuitos estudiados en las lecciones.

Así pues, irá Ud. encontrando en esta Colección modelos de todas clases. Aunque de momento se encuentre con alguno que no lo comprenda, no debe preocuparle, ya lo dominará más adelante, pues la colección la distribuyo en Cuadernos que irá Ud. recibiendo.

Este primer Cuaderno empieza por todos los circuitos posibles de receptores de galena, cargadores de acumuladores, eliminadores de baterías y receptores de una lámpara a base de baterías.
Con respecto a las bobinas que forman parte de los circuitos del n.° 1 al 33 de receptores de galena pueden construirse de muy diversas maneras, por ejemplo: a base de devanar las espiras unas al lado de las otras, sobre un tubo de cartón, bien a base de fondo de cesta, o bien a base de nido de abeja. El número de vueltas depende del grueso del mandril, o sea del agujero central. Como orientación daré algunos detalles de las vueltas aproximadas a base de diámetros interiores de 60 y 25 mm.

Diámetro del tubo o mandril - 60 mm.

- Circuitos de una sola bobina - 60 vueltas.
- Circuitos de dos bobinas (primario y secundario).
 - Primario - 20 vueltas.
 - Secundario - 60 vueltas.
 - Grueso del hilo - 0.5 mm. de diámetro.

Diámetro del tubo o mandril - 25 mm.

- Circuitos de una sola bobina - 100 vueltas.
- Circuitos con dos bobinas (primario y secundario).
 - Primario - 30 vueltas.
 - Secundario - 100 vueltas.
 - Grueso del hilo - 0.3 mm. de diámetro.
Los detalles prácticos sobre los esquemas, números 34, 35, 36 y 37 son los siguientes:

Receptor n.° 34.

Bobina primaria (la de antena y tierra).
50 vueltas y una toma cada 10 vueltas.

Bobina secundaria.
60 vueltas y una toma a las 20.

Diámetro bobina 7 cm. hilo forrado algodón de 0,7 ó 0,8 mm. diámetro.

Receptor n.° 35.

Consta de dos transformadores de alta.

1.° Transformador:

Bobina primaria (la de antena) - 20 vueltas.
Esta bobina está devanada encima y en el centro del secundario.

Secundario - 70 vueltas.

2.° Transformador:

Primario (el de tierra) 16 vueltas.
Secundario (a continuación separado 5 mm.) - 65 vueltas.

Diámetro tubo 5 cm. hilo esmaltado de 0.5 mm. de diámetro.

Receptor n.º 36.

La antena se conecta en la parte superior de la bobina.
Vuelvas totales 80, colocadas en un tubo de cartón de 6 cm. de diámetro. Hilo de 0.5 mm. de diámetro esmaltado.
La bobina tendrá dos cursores para buscar los puntos correspondientes.

Para usar este montaje a base de pila, es necesario en vez de galena usar carborundum, que tiene la propiedad que haciéndole circular una pequeña corriente se hace más sensible y potente que la galena.

Receptor n.º 37.

Las mismas características que el esquema 35, pero con un diámetro de bobina de 6 cm. y los dos transformadores independientes.

Los receptores de galena dan resultado a base de trabajar con antenas de 30 metros como mínimo y una buena tierra.
Receptor de galena a base de Bobinas "Lado de costas".

Receptor de galena con eliminador en el mismo tubo.

Receptor de carborundum con pila excitadora.

Receptor de galena con eliminador separados.
RECTIFICADORES para cargar acumuladores

40

CARGA HASTA 12 VOLTIOS
1.1 AMPERIOS

41

CARGA HASTA 12 VOLTIOS
5.09 AMPERIOS

42

Eliminador con lámpara PHILIPS 506 y para consumo hasta 0.8 amperios.
Circuito RADIO FRECUENCIA SINTONIZADA

L1-L2-L3 - Transformadores de Radiofrecuencia.
C1-C2-C3 - Condensadores variables del tander.
C4 - Condensador de 250 cm.
C5 - Condensador de 1000 cm.
C6 - Condensador 1 MF.
R1 - Reostato encendido.
R2-R3 - Reostato de filamento.
R4 - Reostato de alta tensión.
R5 - Resistencia 2 M.

T1-T2 - Transformadores Audiofrecuencia.
J1 - Jack para conectar altavoz a solo 4 lámparas.
J2 - Jack para altavoz trabajando las 5 lámparas.
AT - Bornes de alta tensión.
BT - Bornes de baja tensión.
Rej - Bornes de la batería auxiliar de 4 voltios para hacer las rejillas negativas.
I - Interruptor encendido.
Esquema de calefacción indirecta enchufado a la corriente continua con filtro de entrada.
C1-100 cm; C2-cond.sintonia; C3-250 cm; C4-1000 cm; C5-500 cm; C6-1 MP; C7-C8-C9-2 MP; L1-bob.sintonia; L2-bob. reacción; L3-bob. choque; L4-L5-bob. filtro entrada: R1-2 Mq; R2-0,1 Mp; R3-1000 cm; R4-25000 cm; R5-resist.absorción;

Esquema de un receptor de 2 lamparas de calefacción directa enchufado a la C.C.
C1-100 cm; C2-250 cm; C3-500 cm; C4-C5-1 MP; C5-1000 cm; C7-C8-C9-10-2 MP; L1-bob.sintonización; L2-bob.reacción; L3 y L4-bob.choque; R1-2 Mq; R2-400 cm; R3-100 cm; R4-0,1 Mq; R5-15000 cm; R6-3000 cm; R7-resistencia absorción.

Esquema de calefacción directa enchufado a la corriente continua (una detectora y dos amplificadoras).
Esquema de un receptor alimentado a corriente continua con lámparas americanas de calefacción indirecta.
EL AMPLIFICADOR DE GRAMÓFONO Y DE GALENA

1. Resistencia 300000 Ohms
2. » 25000 »
3. » 250000 »
4. » 22000 »
5. » 50000 »
6. » 500000 »
7. » 400 »
8. Condensador fijo 10000 centímetros
9. » 5000 »
10. Condensador fijo 8 M.F. electrolítico
11. » 1 M.F.
12. » 1 M.F.
13. » 5 M.F.
14. » 4 M.F. electrolítico 50 voltios
15. La excitación del dinámico
 Chasis con soportes
 Transformador de corriente y cordón con enchufe
 Tornillos, hembras e hilo de conexión, macarrón, etc
Esquema de un receptor de 3 lamparas alimentado con corriente alterna a base de rectificación monoplacea.
Esquema de un receptor de 3 lamparas alimentado con corriente alterna a base de rectificación bipola.
Esquema de un receptor de 3 lamparas americanas para corriente alterna y altavoz electrodinamico (filtraje por el positivo)
Receptor universal, 5 lámparas serie Rimlock (2 ondas)
Receptor alterna, 4 lámparas serie roja (2 ondas)
Esquema de un receptor de 3 lámparas para corriente alterna con altavoz electrodinámico (filtaje por el negativo).
Aparato de tres lámparas americanas
Aparato de tres lámparas europeas
Valores

Cl = 2000 c.m.
2 = 500 c.m.; variable
3 = 500 c.m.
4 = 250 c.m.
5 = 10 M.F. 50 volts.
6 = 250 c.m.
7 = 5000 c.m.
8 = 8 M.F. 450 volts.
9 = 8 c.m.
10 = 50000 c.m.
11 = 200000 c.m.
R1 = 1 Megohm
2 = 25000 ohms
3 = 800 c.m.
Esquema de un receptor de 3 lámparas para corriente continua o alterna con altavoz electrodinámico.
Aparato de cuatro lámparas europeas
Colección Esquemas

STEWAR-WARNER modelo R. 101-A.
R. 101-A.
Receptor de 4 lámparas para corriente alterna (filtraje por el negativo)
Receptor a baterías, 4 lámparas (2 ondas)
Receptor universal, 4 lámparas "serie roja" (2 ondas)
67 - Esquema de un receptor de 4 lámparas para todas corrientes. R1 - pot. de 20,000; R2 - 200; R3 - 30,000; R4 y R5 500,000; R6 - 700; R7 - 158; C1 y C2 - tándem; C3 - 50,000; C4 - 5 MF. a 50 voltios; C5 - 250; C6 - 20,000; C7 - 5 MF. a 50 voltios; C8 - 10,000; C9 - 10,000; C10 - 100,000; C11 y C12 - 8 MF. a 200 voltios.

Errata - La conexión que va a la parte inferior de SW (interruptor) debe de ir a la clavija, en la patita que comunica con R7.
68. - Receptor superheterodino de 4 lámparas para onda normal en corriente alterna.
69.- Receptor de 3 lámparas para corriente universal. La lámpara 6 F 7 es doble o sea una triodo-pentodo; equivale pues este receptor a un cuatro lámparas.

P1 y P2 - primarios; S y S1 - secundarios, C1 y C5 - tándem; C2 y C4 - 100.000; C6 - 250, C7 y C10 - 10.000; C8 y C9 - 8 MF. a 200 v.; C11 y C - 5.000; R12 - 200 cm.; C3 y C13-5 MF. a 50 v.; R1 - 10.000; R2 - 50.000; R8 - 200; R4 - 500.000; R5 - 100.000; R6 - 80.000; R7 - 500.000; R8 - 1.000; R9 - 500; R10 (para 125) - 335.
70 - Receptor con 4 lámparas europeas
71 - Esquema de un receptor modelo americano de 4 lámparas para corriente alterna. La segunda lámpara (58) es detectora por rejilla. Filtraje por negativo. La polaridad negativa de grilla amplificadora es obtenida de una toma media de la excitación de altavoz (entre H y H1).
72. – Esquema de un receptor enchufado a todas las corrientes a base de una lámpara doble (rectificadora y pentodo). Las estaciones locales se obtienen en altavoz. Reacción por potenciómetro.
73 - Esquema de dos lámparas, equivalente a tres ya que la 12 A 7 son dos lámparas (rectificadora-pentodo).

C1 - 200 variable; C2 y C3 variable 500 cm; C4 - 20.000; C5 y C6 - 8 Mf; C7 - 5 Mf; C8 - 5000; R1 - 2 megohms; R2-400.000; R3 - 500.000; R4 - 700.
74. – Esquema de un dos lámparas para todas corrientes equivalente a un 4 lámparas por usar dos lámparas dobles: la 6F7 (tríodo-pentodo) y la 12 a 7 (rectif-pentodo).
Receptor universal, 5 lámparas de la serie S (2 ondas)
Como habrá podido ir observando, el conjunto de todas las Colecciones formará para Ud. un libro de consulta de un valor indiscutible, no sólo como estudio de los diversos sistemas de circuitos, sino imprescindible para la reparación de muchos tipos de receptores, así como de orientación cuando desee construir alguno.

De momento sólo le recomiendo hojearlos pero no debe esforzarse todavía en quererlos comprender, ya que le faltan aún más detalles técnicos para algunos de ellos, pues se los envío al objeto de que vaya coleccionándolos para más adelante, en que a Ud. le serán de fácil comprensión.
Receptor de Radio-Frecuencia Modelo R-150 (corriente alterna)

Depósito Legal B - 9048 - 1958
76. Esquema de un amplificador de 3 lámparas tipo octal para corriente alterna. La selfs de filtro corresponde a la excitación de altavoz.
Esquema básico de la mayoría de receptores universales
FRÉNCH H 2 PENTODE 110 V.
Receptor para ambas corrientes, 5 lámparas serie rcje

<table>
<thead>
<tr>
<th>Red</th>
<th>Res. absorción</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 V</td>
<td>75 ohmios</td>
</tr>
<tr>
<td>125 V</td>
<td>150</td>
</tr>
<tr>
<td>150 V</td>
<td>275</td>
</tr>
<tr>
<td>220 V</td>
<td>625</td>
</tr>
</tbody>
</table>
Receptor alterna, 5 lámparas "serie" roja (2 ondas)
Receptor universal 5 lámparas del Curso con C. A. S.
Receptor alterna, 5 lámparas con "ojo mágico" (2 ondas)
Con válvulas TUNGSRAM

2A7

58

2A6

2A5

A = Onda de 15-52 m
B = 200-580 m
R = Cond. padding

Brazo oscilador visto de arriba
Las otras bobinas llevan los terminales marcados
93. - Esquema de un receptor de 5 lámparas metálicas para todas las corrientes con onda corta y normal.
94.- Esquema de 5 lámparas, para corriente alterna y toda onda. (De este modelo existen muchos receptores construidos en España con material y bobinas americanas).
Receptor alterna, serie Rimlock (2 ondas)
Receptor alterna con C. A. S., 5 lámparas (2 ondas)
Circuit Data of Stewart-Warner Models R-102-A, B & E.
Wiring Changes in Model 70

I-F Peak
260 kc.

Speakers, plugs, and socket connections shown.
Clarión
mod. 80
Receptor universal con C. A. S., 6 lámparas - doblador de tensión (2 ondas)
Receptor alterna con C. A. S., 6 lámparas - paso en alta (2 ondas)
1. In some sets an R.F. Choke (R 6744) is used instead of this resistor.
2. In some sets a 200k resistor is used.
3. Some sets do not have the 100 Ohm resistor & Hi-Lo switch.

Condenser Ratings are Max. Voltage
Resistor Ratings are 1/2 watt
The Coils Are Numbered & Labeled To Correspond With the Given Diagram Check & Illustration.
Colección Esquemas
Esquema de un tres lámpara Universal, a base de la lámpara monoplaça 12Z3
Receptor de 5 lámparas metálicas para corriente continua
Receptor para automóvil, 5 lámparas (2 ondas)
Receptor alterna con C. A. S., 7 lámparas ojo mágico amplificación push-pull (2 ondas)
Receptor de 3 lámparas. - Corriente alterna.

Onda corta y normal.

A B C E F – Bobina de corte.
1 D B G H – > de normal.
N.º 1 – Un condensador 200 cm.
> 2 – Un condensador variable de aire de 500 cm.
> 3 – Una resistencia de 1 Megohm.
> 4 – Un condensador de mica 500 cm.
> ch – Bobina choque R. F.
N.º 5 – Un condensador 1 MF.
> 6 – Una resistencia 20.000 ohms.
> 7 – Un transformador de baja frecuencia.
> 8 – Altoparlante magnético.
> 9 – Un bloque condens. 8 X 8 500 voltas.
> 10 – Self.
> 11 – Un condensador 1 MF.
> 12 – Una resistencia 2000 ohms.
Receptor 3 lámparas "universal" con amplificación de baja a transformador.
Moderno receptor de 4 lámparas de gran potencia para baterías.
Receptor de corriente alterna de 4 lámparas.
Aparato receptor de cuatro lámparas universal.
Esquema de un Superheterodino de cuatro lámparas
R C A Victor Modelo 121 y 122
(La voz de su Amo)
RCA Victor Modelo 85
(La Voz de su Amo)
Receptor-transmisor -2'5 metros- a baterías
(adoptado por el ejército de los Estados Unidos)
Receptor alterna-continua 220 voltios, 4 lámparas serie Acero.
Receptor "General Electric" Modelo A 53
Receptor "General Electric" Modelo A 63 y A 65
Receptor H.M.V. Modelos 110, 111 y 115
(La voz de su Amo)
Receptor "Universal" Modelo R. - 155
(La voz de su Amo)
Receptor R C. A. Victor. Modelo 85 T-1
(La Voz de su Amo)
R. C. A. Victor. Modelo 6K2
(La Voz de su Amo)
Receptor Superheterodino a base de lámparas metálicas o su equivalentes en vidrio

LUGS 3 AND 4 USED ITB
TRANSPOSED ANTENNA, REG.
ANTENNA ON 4 SHORT 3 TO GROUND

TU-327-S COVERS RANGES 540-1800 KC; 1.735-5.83 MC; 5.7-18.2 MC
TU-328-L " " 140-885 KC; 640-1800 KC; 5.7-18.3 MC

TU UNITS ARE INTERCHANGEABLE, MECHANICALLY AND ELECTRICALLY

UNIT MUST BE GROUNDED TO CHASSIS

PADDING CONDENSER FOR 540-1800 KC RANGE BOTH UNITS.
PADDING CONDENSER FOR 1.735-5.83 MC TU-327-S 140-885 KC TU 328-L

* INDICATES POINT WHERE COILS ARE SWITCHED; UNUSED COILS ARE SHORTED OUT COMPLETELY.
Esquema de un Superheterodino de 3 ondas muy usado en la construcción nacional
(29) Esquema de un receptor Superheterodino diseñado con lámparas metálicas.
Receptor Superheterodino ondas extracorta y normal.
Receptor "Universal" R. C. A. Victor Modelo 114
(La Voz de su Amo)
Receptor Superheterodino Modelo Raes de 5 lámparas para onda corta y normal.

Super "RAES"
Receptor Superheterodino Modelo FEARE de 6 lámparas con onda corta y normal.
Receptor BAYONA modelo "Diana"

L1 L2 L3 bobinas.
C1 C2 C3 cond. varia.
C4 » 2,000 cm.
C5 C6 C7 » 3 x 0'1 mf.
C8 » 1 mf.
C9 » 10,000 cm.
C10 C13 » 5,000 cm.
C11 Conden. 1-8 mf.
C12 » 8 mf.
C14 » 250 cm.
C15 » 100 cm.
C16 » 25,000 cm.
R1 Poten. 14,500 ohms
R2 Resist. 250 ohms
R3 » 3000 ohms.
R4 R11 » 100,000 ohms
R5 R6 R7 R12 » 30,000 ohms
R8 » 0'32 megohms
R9 » 50,000 ohms
R10 » 0'5 megohms
R13 » var. 50,000 megohms
"SUPER-SIX" DE SEIS LAMBRAS PARA TODAS ONDAS (18-2000 metros), CORRIENTE CONTINUA, CONTROL AUTOMÁTICO DE VOLUMEN, ANTIFADING Y CON LA MÁXIMA SELECTIVIDAD, TENIENDO UN TONO AGRADABLE.
Philips (Pionier) con varias longitudes de ondas.
Receptor Philips modelo 510 A.

MF = 115 kHz
1935-36
Abh. Sp.
Receptor Philips modelo 525 A.

\[MF = 115 \text{ kHz} \]

1935-36

E446

E443H
Receptor Philips modelo 2531.
Receptor Universal FADA. Modelo R. N.
This receiver tunes from 1765 kc to 520 kc.

- 530,000 ohms in series. Volume control at maximum.
CROSLEY MODELO 163.

IF PEAK 456 KW
100-130 v. D.C. or A.C.
U.S. RADIO TELEVISION CORP. MODELO 99.

PEAK FREQUENCY

262 KC
LA VOZ DE SU AMO, MODELO 442. A C.
PHILIPS MODELO 938 A
SUPERHETEROGRADO DE 4 LAMBRAS TOTA Onda
(Para corriente alterna)
CROSLEY. Modelo 141.

IF PEAK 181.5 KG.
STEWART WARNER Mod. R111 y R115
BLAUPUNT - SUPER 4G6.

BCH1

RENS 1834

RENS 1854

BL2
KENNEDY | MODELO 563A.

I.F. = 175 KC.

FIVE TUBE SUPERHETERODYNE
CLARION SERIES 100 SUPERHETERODYNE

PEAK FREQUENCY 175 KC

SCHEMATIC DIAGRAM FOR CLARION MODEL 100
EMERSON H 5

SCHEMATIC CIRCUIT OF MODEL H-5

IF PEAK 172.5 KG

A - Megohms

Filamentary Circuit
PUNTO AZUL · L W 2000 K.
TELEFUNKEN, 122 W.
SEIBT 43 W (ROLAND).
CROSLEY. MODELO 129-1.

IF PEAK 181.5 KC
RECEPTOR 8 VALVULAS PASO EN ALTA Y AMPLIFICACION PUSH-PULL
(41) RECEPTOR 5 VALVULAS RIMLOCK 2 ONDAS
ANGLO (AEESA) MODELO 57 - TA

ECH 42 EAF 42 EBC 41 EL 41 AZ 41

F 1 472,5 KHz
RECEPTOR PHILIPS UNIVERSAL CON VALVULAS RIMLOCK

F.I. 465 Kc.
RECEPTOR MARCONI MODELO L - 155

F.I. 455 Kc.
RECEPTOR IBERIA MODELO S - 33

EF 41 ECH 42 EF 41 EAF 42 EL 41

F 1 472 Kc.
AMPLIFICADOR TIPICO R.C.A. CLASE B -10 VATIOS DE POTENCIA
RECEPTOR IBERIA Mod. H - 17652

1ª F.I. variable de 2'65 a 3'25 Mc
2ª F.I. fija a 472 Kc.
AMPLIFICADOR FONOGRÁFICO 6 W SALIDA
Receptor Marconi UM-25 / UM-35

Colección esquemas
CIRCUITO TÍPICO DE RECEPTOR PARA AUTOMÓVIL
INTERCOMUNICADOR CON CENTRAL Y SEIS UNIDADES LEJANAS
SINTONIZADOR DE FRECUENCIA MODULADA
ESCUELA RADIO MAYMO

195

Colección esquemas

TRANSMISOR para 7 y 14 Mc.

TABLA DE SOBINAS

<table>
<thead>
<tr>
<th>Banda</th>
<th>Vueltas L.</th>
<th>Separación</th>
<th>Toma</th>
<th>L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 m.</td>
<td>18</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>20 m.</td>
<td>9</td>
<td>6 mm.</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Con hilo de 2 mm. sobre forma de 8 cm.
RECEPTOR SUPERHETERODINO 5 LAMPARAS UNIVERSAL

12BE6

12BA6

12AT6

50B5

35W4

125 V

12AT6 12BE6 12BA6 50B5
AMPLIFICADOR UNIVERSAL 6.5 W SALIDA PUSH - PULL
RECEPTOR TUNGSRAM Mod. SEÑORIAL 4
RECEPTOR UNIVERSAL CON LAMPARAS SERIE NOVAL
AMPLIFICADOR CLASE AB1. 25 W SALIDA
RECEPTOR MARCONI UM-15
ETAPAS DE AMPLIFICACIÓN Y CONTROL DE TONO

PREVIO PARA PICK-UP MAGNETICO

ENTAPA AMPLIFICADORA DE ENTRADA DE BAJA DISTORSION

ETAPA AMPLIFICADORA

12AU7

0.1 μF

ENTRADA

SALIDA A.F.

5 μF

SALIDA B.F.

0.005 μF

SALIDA

230000 Ω

baja distorsión

ETAPA DE CONTROL DE TONO BAJOS Y AGUDOS
AMPLIFICADOR DE BF. 9 W SALIDA
AMPLIFICADOR ERMSA HI-FI Mod. H 12. SALIDA 15 W.
RECEPTOR TUNGSRAM Mod. PERLA
RECEPTOR AEESA Mod. 39 - FA 82

$F_1 = 422.5 \text{ kHz}$
RECEPTOR INVICTA Mod. 5.321

V₁ = UC42
V₂ = UF41
V₃ = UBE41
V₄ = UL41
V₅ = UY41

F.I. 455 Kc
RECEPTOR IBERIA Mod. S-31

EF41 ECH42 EBF60 EGG40 EL41

F.L. 472 KC
AMPLIFICADOR CLASE B. EQUIPO MOVIL SALIDA 10 W.
AMPLIFICADOR C.C. CLASE A1. SALIDA 4 W.