COMPILED BY 'WIRELESS WORLD'

Characteristics of

2,000

Valves and C. R. Tubes

RADIO

MARIAN

EDATA

SECOND EDITION . THREE SHILLINGS AND SIXPENCE NET

RADIO VALVE DATA

Characteristics of 2,000 Valves and Cathode-Ray Tubes

Compiled by

Wireless World

All rights reserved. These tables are the copyright of Iliffe & Sons Ltd., and may not be reproduced whole or in part without permission

> First published February, 1949 Second Impression April, 1949 Third Impression 1950 Second Edition 1951

> > Published for

"WIRELESS WORLD"

by

ILIFFE & SONS LTD : LONDON

ded as a.f. T), ose for in

de de by n ıe le

CONTENTS

			A CAMPAGNATA THE			
			PAGE			PAGE
General Abbreviations			2	E.H.T. Rectifiers		48
				Cathode-Ray Tuning Indicators		49
Explanation of the Tables		100	3	Barretters		50
Tables of Valve Characteristics:			EN EN A	Voltage Stabilizers	••	50
Frequency-changers			7	Thyratrons		51
Screened Tetrodes and Pentodes			12	Television Cathode-Ray Tubes		52
Output Valves I			20	Efficiency Diodes		53
Output Valves 2	17		28	Oscilloscope Cathode-Ray Tubes	1	54
Output Valves 3			, 31	Explanation of Valve-base Connections		56
Thermionic Diodes			32			
Non-thermionic Diodes			34	Valve-base Drawings	11	57
Amplifier Triodes			35	Tables of Valve-base connections		58
Small Transmitting Valves			41			
Valve Rectifiers			42	Index		64
Metal Rectifiers			47	Trade Names and Manufacturers' Addresses	70.49	79

GENERAL ABBREVIATIONS

Used in Valve Data Tables

* appended to filament or heater voltage, indicates a directly heated cathode (that is, filament). Valves without the asterisk have indirectly heated cathodes.

† appended to filament or heater current, indicates that the valve has a centre-tapped filament or heater. The figures given are invariably for the parallel connection of the two parts; for the series connection the voltage is doubled and the current halved.

(Some directly heated valves of low current consumption may need the connection of a resistor across one half of the filament when using the series connection.)

	a—a	Anode-to-anode	MV	Mercury vapour	
	BT	Beam tetrode	0	Octode	
	Cak	Anode-cathode capacitance	P	Pentode	
	Coa	Grid-anode capacitance	Pa	Anode dissipation	
	C_{gk}	Grid-cathode capacitance	PI	Peak inverse	
	D	Distortion	R	Rectifier	
	DD	Double-diode	ra	Anode a.c. resistance	
	DBT	Double beam tetrode	R _K	Cathode bias resistance	
	DP	Double-pentode	RL	Optimum load resistance	1
	DT	Double-triode	SD	Single-diode	
	FW	Full-wave	T	Triode	
	g-g	Grid-to-grid	TD	Triple-diode	
3	ge	Conversion conductance	TH	Triode-heptode	
	gm	Mutual conductance	TH	Triode-hexode	
	HW	Half-wave	TP	Triode-pentode	
	H	Heptode	TT	Tetrode	
	Hz	Hexode	VD	Voltage-doubler	
	I_k	Cathode current	. VM	Variable mu	