I PARAMETRI "Y" E GLI AMPLIFICATORI A BANDA STRETTA

PARTE PRIMA: STUDIO TEORICO

Prerequisiti:

Conoscenza della teoria dei quadripoli e dei parametri che li caratterizzano. Conoscenza dei concetti di base che si riferiscono alla polarizzazione, all'amplificazione ed ai circuiti equivalenti. Conoscenza dei circuiti risonanti e dei numeri complessi. Conoscenza dei rapporti di trasformazione. Conoscenza del calcolo di un Amplificatore di tensione.

Obiettivi:

Progettare un amplificatore selettivo ed essere in grado di studiare e risolvere i problemi inerenti.

01). GENERALITA'

E' già noto il funzionamento di un amplificatore audio con i problemi che riguardano la banda passante, che noi vorremmo la più larga possibile. Sappiamo anche realizzare uno stadio con le relative frequenze di taglio f_i e f_s.

Vorremmo porre, ora, la nostra attenzione sulle **condizioni limite opposte** che si verificano quando vi è, invece, la necessità di avere una banda passante notevolmente stretta.

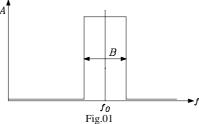
In questo caso abbiamo a che fare con gli amplificatori a banda stretta o "selettivi".

La parola stessa "selettivo" chiarisce il concetto: poter selezionare una frequenza o un gruppo ben definito di esse all'uscita dell'amplificatore con l'esclusione di tutte le altre.

02). GLI AMPLIFICATORI SELETTIVI

Teoricamente, un "amplificatore selettivo" è un amplificatore a banda stretta capace di amplificare in modo uniforme un gruppo di frequenze che rientrano in una finestra, o Canale, d'ampiezza di banda predeterminata B, con la reiezione totale di tutte le altre. Questa finestra è anche chiamata Banda Passante B ed è misurata in Hz.

La Fig.01 mostra l'andamento teorico di un amplificatore selettivo perfetto, dove tutti i segnali dentro la banda passante B sono amplificati ugualmente, mentre all'esterno di essa l'amplificazione è nulla. Ciò ovviamente è irrealizzabile in pratica e si ricorre a molti tipi di circuiti più o meno validi e più o meno complessi che approssimano il più possibile la banda B effettiva a quella teorica.



Tra i tanti, il metodo più semplice per realizzare praticamente un amplificatore selettivo è quello di utilizzare i **circuiti risonanti.** La relazione fondamentale che lega tra loro la frequenza selezionata fo, la banda passante B e la bontà del circuito risonante Q è d'importanza strategica per la progettazione, ed è espressa dalla formula (01):

$$B = \frac{\text{fo}}{Q} \tag{01}$$

Richiami (circuiti risonanti).

E' il caso di richiamare, a questo punto, qualche concetto essenziale sui circuiti risonanti.

Prenderemo come esempio di studio un circuito risonante serie, assicurando che i risultati essenziali valgono anche per il circuito risonante parallelo. (Basta sostituire nel discorso l'ammettenza all'impedenza, la tensione alla corrente e viceversa).

Un tipico circuito risonante serie è mostrato in Fig.02, dove vengono indicate anche le tensioni e le correnti in gioco: La corrente $I(\omega)$, funzione della frequenza ω , è data dalla legge di Ohm:

$$I(\omega) = \frac{V(\omega)}{\overline{Z}(\omega)} \tag{02}$$

dove l'impedenza è espressa da:

$$\overline{Z}(\omega) = R + j \left(\omega L - \frac{1}{\omega C}\right)$$

$$\downarrow V_L \qquad V_C \qquad V_R \qquad \downarrow V_R \qquad \downarrow I(\omega)$$

$$\downarrow I(\omega) \qquad \downarrow I(\omega) \qquad \downarrow I(\omega)$$

$$\downarrow V_L \qquad \downarrow V_R \qquad \downarrow I(\omega)$$

$$\downarrow I(\omega) \qquad \downarrow I(\omega)$$

Sappiamo che la pulsazione di risonanza è, per definizione, quel particolare valore ω_0 della ω che annulla la parte immaginaria di $Z(\omega)$, facendo diventare la $Z(\omega)$ puramente reale. Ossia deve verificarsi che:

$$\left(\omega \mathbf{L} - \frac{1}{\omega \mathbf{C}}\right) = 0 \tag{03a}$$

dalla cui soluzione si ottiene la nota relazione fondamentale:

$$\omega_{0} = \frac{1}{\sqrt{L \cdot C}}$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

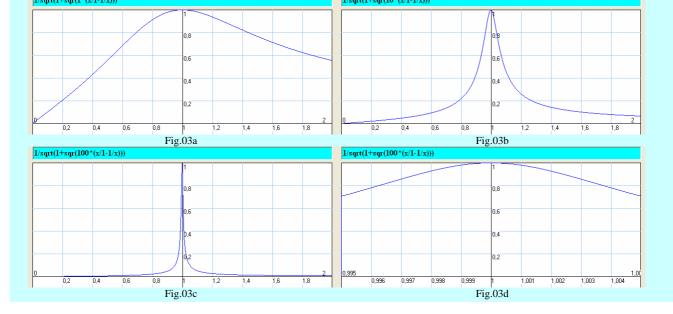
$$0.7$$

A tale valore di ω ($\omega = \omega_0$) il modulo dell'impedenza $|\mathbf{Z}(\omega_0)|$ assume il valore minimo reale \mathbf{R} . Di conseguenza la corrente si porta al valore massimo in fase con la tensione:

$$I_0 = \frac{V}{P} \tag{05}$$

L'andamento di $I(\omega)$ dà luogo alla classica curva di risonanza a campana come in Fig.03, dove sono riportati il valore massimo Io e la banda passante B (a -3dB come per sua definizione). La curva è quella disegnata su un caso effettivo: si noti la dissimmetria di forma rispetto ad ω_0 , che vi è sempre, e risulta molto accentuata e visibile quando il Q è molto basso.

Adoperando un adeguato programma¹ di funzioni, analizziamo alcuni casi significativi di questa curva:



¹ Un programma personale sviluppato con linguaggio "Delphi" in ambiente Windows XP.

Le figure 03a,b,c, mostrano i grafici delle curve a campana per tre valori di Q su una frequenza di risonanza normalizzata ad 1 e per una corrente anch'essa normalizzata al valore 1. I grafici sono estesi da zero al doppio della frequenza di risonanza (da 0 a $f=2f_0$ ossia tra 0 e 2).

La Fig.30a, che rappresenta l'andamento della curva per un Q molto basso (Q=1), mostra con molta evidenza la sua dissimmetria rispetto alla $f_0=1$.

La Fig.03b rappresenta l'andamento della curva con un Q=10. E' notevole il miglioramento apparente della simmetria rispetto all'asse $f_0=1$.

La Fig.03c rappresenta l'andamento della curva di risonanza di un circuito RLC con un Q molto alto (Q=100). Si nota come la simmetrizzazione è praticamente raggiunta mentre la curva assume la forma a cuspide. E' importante notare, anche, come la seconda armonica (f=2f0) sia molto attenuata. Il circuito con un Q=100 si dimostra quindi abbastanza selettivo. Il calcolo fornisce in 2f0 un'attenuazione da 1 al valore 0,00666, pari a -43,5dB.

Facciamo ora qualche conticino. Mettiamo nella (01) il valore normalizzato della frequenza f_0 =1 ed il Q=100. Otteniamo una banda passante B pari a:

$$B = \frac{\text{fo}}{Q} = \frac{1}{100} = 0.01$$

con un

$$\Delta f = \frac{B}{2} = 0.005$$
.

La Fig.03d mostra l'espansione del grafico nell'intorno di f = 1 tra:

$$f_1 = 1 - \Delta f = 1 - 0.005 = 0.995$$
 e $f_2 = 1 + \Delta f = 1 + 0.005 = 1.005$

dove si nota come, confermando la teoria, ai due estremi della banda passante **B** la corrente scenda a $\frac{1}{\sqrt{2}}$ I = 0,707 · I .

(Il calcolo fornisce un valore di 0,7062 a 0,995 e un valore di 0,7079 a 1,005. Ciò dimostra che la dissimmetria è sempre presente).

____*___

Approfondimento Matematico

La (01) è molto importante e deve essere giustificata:

Si ricordi che in una impedenza LR serie il coefficiente di bontà Q è definito come il rapporto tra la potenza reattiva e le potenza attiva che si sviluppano ai suoi capi:

$$Q = \frac{Z(\omega) \cdot I^2}{R \cdot I^2} = \frac{(\omega_0 \cdot L) \cdot I^2}{R \cdot I^2} = \frac{\omega_0 \cdot L}{R}$$

Poiché le perdite maggiori in un circuito risonante sono dovute alla parte induttiva, il Q dell'intero circuito può essere rappresentato dalla sola espressione induttiva:

$$Q = \frac{\omega_0 \cdot L}{R}$$

che, per la (03a), può essere anche scritta così:

$$Q = \frac{1}{\omega_0 \cdot CR}$$

Alla risonanza i valori di tensione V_L e V_C ai capi dell'induttanza e della capacità sono, per la legge di Ohm e per la (5):

$$vL = j\omega L I_0 = j\frac{\omega L}{R} \cdot V = +jQ \cdot V \tag{06}$$

$$v_{c} = -j\frac{I_{o}}{\omega_{c}C} = -j\frac{V}{\omega_{c}CR} = -jQ \cdot V \tag{07}$$

ossia sono in quadratura in anticipo e in ritardo rispetto al segnale d'ingresso e diventano delle sovratensioni Q volte più grandi. Dalla (02) abbiamo anche, per il **valore assoluto** di $I(\omega)$:

$$|I(\omega)| = \frac{V}{|Z(\omega)|} = \frac{V}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$
(08)

Dividendo il numeratore e il denominatore della (08) per R otteniamo l'importante relazione:

$$\left|I(\omega)\right| = \frac{V/R}{\sqrt{1 + \left(\frac{\omega L - 1/\omega C}{R}\right)^2}} = \frac{I_o}{\sqrt{1 + \left[tg\,\varphi(\omega)\right]^2}}$$
(09)

tenendo in considerazione che (dalla teoria dei numeri complessi) la tangente trigonometrica **tg** è data dal rapporto tra la parte immaginaria e la parte reale dell'impedenza del circuito.

Con qualche artifizio matematico ed applicando la (04) possiamo scrivere, a seguire:

$$tg\varphi = \frac{\omega L \cdot \omega_0}{\omega_0} - \frac{\omega_0}{\omega C \cdot \omega_0} = \frac{\omega \cdot \omega_0 L}{\omega_0 \cdot R} - \frac{\omega_0}{\omega C \omega_0 \cdot R} = \frac{\omega}{\omega_0} \cdot Q - \frac{\omega_0}{\omega} \cdot Q =$$

$$= Q \cdot \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right) = Q \cdot \frac{\omega^2 - \omega_0^2}{\omega_0 \cdot \omega} = Q \cdot \frac{(\omega - \omega_0) \cdot (\omega + \omega_0)}{\omega \cdot \omega_0} =$$

$$= Q \cdot \frac{\omega + \omega_0}{\omega} \cdot \frac{\omega - \omega_0}{\omega_0} = \left(1 + \frac{\omega_0}{\omega}\right) \cdot \frac{\Delta\omega}{\omega_0} \cdot Q$$
(10)

dove $\Delta\omega$ rappresenta la differenza dei valori tra la frequenza di risonanza ω_0 e la frequenza corrente ω .

Riusciamo a semplificare la relazione, osservando che nell'intorno di ω_0 si può porre $\omega \cong \omega_0$, per cui possiamo ritenere $\omega_0 = 1$, quindi:

$$tg\varphi \cong (1+1) \cdot \frac{\Delta\omega}{\omega_0} \cdot Q = 2 \cdot \frac{\Delta\omega}{\omega_0} \cdot Q \tag{11}$$

Perciò, *nei pressi di \omega_0* l'espressione (09) di $\mathbf{I}(\boldsymbol{\omega})$ diventerà:

$$\left| \mathbf{I}(\omega) \right| = \frac{\mathbf{I}_0}{\sqrt{1 + \left(2\mathbf{Q} \cdot \frac{\Delta\omega}{\omega_0} \right)^2}}$$
 (12)

Si è stabilito di definire come "banda passante B" il canale intorno a ω_0 che è compreso tra i due valori di $\omega:\omega_1$ e ω_2 in corrispondenza dei quali la corrente si riduce al valore $I_0/\sqrt{2}=0.707\cdot I_0$ ossia scende di **-3dB** dal valore massimo.

Per rispettare questa condizione deve, allora, verificarsi nella (12) che:

$$2 \cdot Q \cdot \frac{\Delta \omega}{\omega_0} = 1 \tag{13}$$

in corrispondenza di $\,\omega_1^{}\,$ e $\,\omega_2^{}\,$.

 $\Delta\omega$ rappresenta la differenza dei valori tra ω_0 e ω_1 ed anche tra ω_0 e ω_2 , perciò può porsi:

$$2 \cdot \Delta \omega = B$$
.

Si ottiene, finalmente, dalla (13):

$$\frac{\mathbf{Q} \cdot \mathbf{B}}{\omega_0} = 1 \tag{14}$$

quindi la banda passante B sarà data dall'espressione:

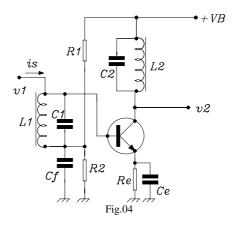
$$B = \frac{\omega_0}{Q} \tag{15}$$

oppure, espressa in frequenza, dalla (01)

.___*__

03). I PARAMETRI "Y"

In Fig.04 è disegnato lo *schema standard* di uno stadio amplificatore selettivo completo di circuiti risonanti sia in ingresso che in uscita, e di un transistor come elemento attivo, insieme ai componenti necessari per la polarizzazione.



Considerando che, in generale, questo tipo di amplificatore è usato per amplificare segnali a frequenze elevate il transistor non può più essere schematizzato mediante i comuni parametri ibridi h, perché questi, essendo considerati reali, non possono rappresentare i fenomeni reattivi in gioco.

Infatti le capacità e le reazioni interne influenzano notevolmente il funzionamento del transistor al variare della frequenza.

In particolare, il circuito d'ingresso assume le dimensioni di un'ammettenza il cui <u>valore con segno</u> può modificare moltissimo le condizioni di <u>stabilità dinamica</u> dello stadio.

Perciò è più conveniente far equivalere il transistor ad un quadripolo il cui funzionamento è esplicitato, in questo caso, mediante parametri **Y**. Essi esprimono, appunto, le sue *ammettenze*.

Con i parametri Y *le due espressioni fondamentali* per il calcolo di uno stadio amplificatore selettivo sono: la (16), che fornisce l'**amplificazione** A dello stadio:

$$A = -\frac{\overline{y}_{fe}}{\overline{y}_{t}}$$
 (16)

che può anche scriversi:

$$A = -\overline{y}_{fe} \cdot \overline{Z}_{t} \tag{17}$$

e la (18) che determina l'importante "condizione di stabilità" dello stadio amplificatore contro le autooscillazioni:

$$G_1 \cdot G_2 = 2 \cdot |y_{fe} \cdot y_{re}| \tag{18}$$

In questa espressione, G_1 e G_2 rappresentano le parti reali, ossia le **conduttanze totali** di ingresso e di uscita dell'amplificatore, **alla risonanza.**

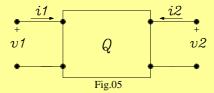
Le relazioni (16) e (18), insieme alla (1) e alle note formule per la polarizzazione, sono sufficienti a progettare completamente uno stadio amplificatore selettivo.

-----*

Approfondimento Matematico

Allarghiamo il discorso e giustifichiamo la (16).

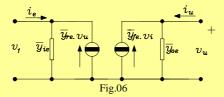
Data una rete due-porte Q lineare, normale e a costanti concentrate come in Fig.05:



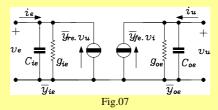
risolviamola mediante i parametri Y. Come già sappiamo, possiamo scrivere per essa il sistema di equazioni:

$$\begin{cases} i_{u} = y_{fe} \cdot v_{e} + y_{oe} \cdot v_{u} \\ i_{e} = y_{ie} \cdot v_{e} + y_{re} \cdot v_{u} \end{cases}$$
(19)

con il significato, per i pedici, comunemente accettato. Dalle equazioni su scritte, poiché vi è l'eguaglianza tra correnti tra il primo e il secondo membro, se ne deduce un circuito equivalente del quadripolo espresso dal principio di Kirhhoff ai nodi come quello in Fig.06:



Esplicitando la Yie e la Yoe nelle loro parti reali ed immaginarie, dalla Fig.06 otteniamo la Fig.07:

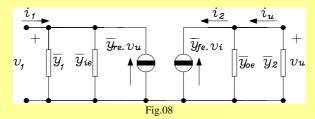


dove sono messe ben in evidenza sia le conduttanze che le reattanze capacitive di ingresso e di uscita. Le seguenti formule, che derivano direttamente dalla Fig.07:

$$\overline{y}_{ie} = g_{ie} + j\omega C_{ie} \qquad \overline{y}_{oe} = g_{oe} + j\omega C_{oe}$$

$$\overline{y}_{fe} = |Y_{fe}|e^{j\varphi_{fe}} \qquad \overline{y}_{re} = |Y_{re}|e^{j\varphi_{re}} \qquad (20)$$

rappresentano le espressioni più consone alle varie Y. La \overline{Y} ie e la \overline{Y} oe sono meglio espresse dai paralleli tra le conduttanze e le suscettanze, mentre la \overline{Y} re e la \overline{Y} fe sono meglio espresse in **modulo e fase** non essendo per esse facilmente individuabili le parti reali e le parti immaginarie (queste ammettenze rappresentano, in fondo, dei generatori di segnali sinusoidali). I parametri così precisati sono generalmente forniti mediate grafici nei manuali. Se chiamiamo con \overline{Y}_1 l'ammettenza del circuito risonante d'ingresso (L_1C_1) e con \overline{Y}_2 l'ammettenza del circuito risonante d'uscita (L_2C_2) disegnati nello schema di Fig.04, il circuito equivalente dell'intero stadio, sarà allora rappresentato dalla Fig.08:



Guardando l'uscita del circuito equivalente e considerando che $\overline{Y}t = \overline{Y}oe + \overline{Y}_2$, otteniamo, per la legge di Ohm:

$$v_{u} = -\frac{i2}{\overline{y}_{t}} = -\frac{\overline{y}_{fe} \cdot v_{i}}{\overline{y}_{t}} \tag{21}$$

da cui:

$$\frac{Vu}{Vi} = -\frac{\overline{y}fe}{\overline{y}t} \tag{22}$$

Abbiamo quindi dimostrato che l'amplificazione A con i parametri Y è rappresentata dalla (16).

----*----

Il circuito equivalente secondo <u>i</u> parametri <u>Y</u> dello schema di Fig.04 è quindi quello di Fig.08. Alla risonanza, annullandosi le parti immaginarie, la $\overline{Y}t = \overline{Y}oe + \overline{Y}_2$ diventa puramente reale e la (16) si trasforma, più semplicemente, nella:

$$A = -\frac{\overline{y}fe}{G_2} = -\frac{\overline{y}fe}{g_{0e} + g_2}$$
 (23)

Questa espressione sarà utilizzata per l'effettiva determinazione dell'amplificazione di uno stadio selettivo.

04). LA STABILITA' DELL'AMPLIFICAZIONE

Da un'attenta analisi del circuito equivalente di Fig.08, si nota che sul circuito primario interviene il generatore interno \overline{Y} re \overline{Y} u che riporta all'ingresso una parte del segnale d'uscita.

Perciò esso produce una corrente di reazione che dipende sia dal tipo di transistor utilizzato (quindi individuato dalla \overline{Y} re) sia dalla tensione d'uscita Vu.

Questa corrente può creare anomalie di funzionamento fastidiose ed anche, a volte, molto gravi per le *seguenti due ragioni*:

- 1) L'effetto capacitivo di ritorno insito in \overline{Y} re rende estremamente difficoltoso l'accordo su f_0 dei due circuiti risonanti perché ogni variazione d'accordo sul circuito d'uscita, necessaria per la sua giusta sintonia, si ripercuote sul circuito d'ingresso portandolo fuori taratura, e viceversa.
- 2) Essendo Yre · Vu una grandezza complessa che varia in modulo e fase, può, in particolari condizioni, produrre una reazione positiva tale da far innescare nello stadio oscillazioni indesiderate.

Dobbiamo, quindi, innanzitutto verificare sotto quali condizioni, l'impedenza d'ingresso può assumere un <u>pericoloso valore negativo</u> (fase di 180°) che, nell'accezione comune in elettrotecnica, significa la creazione di un generatore (<u>in questo caso non previsto né desiderato</u>), che può modificare completamente il normale funzionamento del sistema e rendere inservibile l'amplificatore.

*----

Approfondimento Matematico:

Analizziamo il circuito d'ingresso quando l'amplificatore è nelle *condizioni di risonanza* su f_0 ossia quando l'ingresso e l'uscita assumono valori reali di ammettenza e giustifichiamo la (18).

Abbiamo, con sviluppi successivi (si tenga conto della Fig.08):

$$\begin{split} i_1 &= \overline{y}_1 \cdot v_i + \overline{y}_{ie} \cdot v_i + y_{re} \cdot v_u = \left(g_1 + g_{ie}\right) \cdot v_i + \overline{y}_{re} \cdot v_u = \\ &= G_1 \cdot v_i + \overline{y}_{re} \cdot v_u = G_1 \cdot v_i - \frac{\overline{y}_{re} \cdot \overline{y}_{fe}}{\left(g_{oe} + g_2\right)} \cdot v_i = \\ &= G_1 \cdot v_i - \frac{\overline{y}_{re} \cdot \overline{y}_{fe}}{G_2} \cdot v_i \end{split} \tag{24}$$

Dalla (24) otteniamo l'espressione dell'ammettenza d'ingresso:

$$\overline{Y}_{i} = \frac{i1}{v_{i}} = G_{1} - \frac{\overline{y}_{re} \cdot \overline{y}_{fe}}{G_{2}}$$
(25)

La (25) ci dice che, se il secondo addendo è maggiore del primo, si verifica il caso in cui l'ammettenza d'ingresso Y_i assume il segno negativo.

Ma, per quanto detto sopra ciò non deve verificarsi, perciò noi dobbiamo imporre che Y_i sia sempre positiva $(Y_i > 0)$, ossia:

$$G_1 - \frac{\overline{y}_{re} \cdot \overline{y}_{fe}}{G_2} > 0 \tag{26}$$

Allora deve essere:

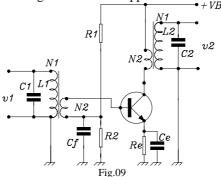
$$G_1 \cdot G_2 > |\overline{y}_{re} \cdot \overline{y}_{fe}|$$
 (27)

Questa la chiameremo "condizione di stabilità" dell'amplificazione.

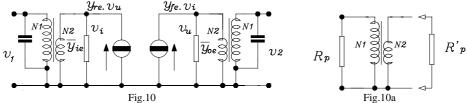
Per la progettazione si può quantificare la "condizione di stabilità" assumendo un coefficiente di maggiorazione almeno pari a due, come proposto nella (18) che qui riscriviamo.

$$G_1 \cdot G_2 = 2 \cdot |y_{\text{fe}} \cdot y_{\text{re}}|$$
(18)

Purtroppo la condizione imposta dalla (18) è molto difficile a verificarsi, a meno che non si aumenti in modo notevole la conduttanza dei circuiti risonanti a scapito però del loro **Q** e quindi della banda passante **B**. **Perciò questa è una via non praticabile**. Esistono, però, modi per ridurre questo inconveniente entro limiti accettabili e tra questi il più comune è quello di modificare il circuito di Fig.04 usando accoppiamenti a trasformatore, come in Fig.09.



Il circuito equivalente riportato in Fig.08 viene allora cambiato come nella Fig.10, in cui è evidente che *il circuito* d'ingresso ha un rapporto in discesa e il circuito d'uscita ha un rapporto in salita:



Guardando la Fig.10 e tenendo presente la figura di sostegno (Fig.10a), ricordiamo dalla teoria del trasformatore le seguenti espressioni essenziali sui rapporti di trasformazione delle tensioni e delle impedenze:

$$V_2 = V_u \cdot \frac{N_1}{N_2}; \qquad V_1 = V_i \cdot \frac{N_1}{N_2}; \qquad R'_p = R_p \cdot \left(\frac{N_2}{N_1}\right)^2 = R_p \cdot n_p^2$$
 (28)

Allora, la conduttanza parallelo (inversa della resistenza) vista dall'elemento attivo sarà:

$$g' = g \cdot \left(\frac{N_1}{N_2}\right)^2 = g \cdot \frac{1}{n_p^2} = g \cdot n^2$$
 (29)

Imposta la conduttanza g dal Q del circuito, attraverso il rapporto spire di valore opportuno, il transistor potrà vedere g'>g e così può essere soddisfatta la condizione di stabilità.

Lo scotto che bisogna pagare è costituito da una notevole diminuzione dell'amplificazione. Infatti adesso abbiamo:

$$A' = \frac{v_2}{v_1} = v_u \cdot \frac{N_1}{N_2} \cdot \frac{1}{v_i} \cdot \frac{N_2}{N_1} = \frac{v_u}{v_i} = \frac{\overline{y}_{fe}}{G'_2}$$
 (30)

dove però è $G_2 > G_2$ e quindi A < A. (Abbiamo usato nell'espressione valori di rapporto-spire uguali sia all'ingresso che all'uscita dello stadio solo per semplicità). Conviene, perciò, aumentare le conduttanze della quantità sufficiente a soddisfare la relazione di stabilità senza abbassare molto il Q dei circuiti risonanti e cercare innanzitutto di *aumentare* più la G_1 che la G_2 fin quanto è possibile, perché la G_1 non compare nell'espressione dell'amplificazione.

L'accoppiamento a trasformatore rende così sicuramente garantita la stabilità ed elimina quasi totalmente gli inconvenienti sull'accordo di sintonia, poiché le reattanze del transistor sono viste dai circuiti risonanti d'ingresso e d'uscita con un rapporto di riduzione pari al quadrato del rapporto spire; è così anche più facile accordare ciascun circuito senza influenzare sensibilmente l'altro. Lo scotto da pagare è dato dalla diminuzione dell'amplificazione A e dall'allargamento del Canale B.

05). UNO STUDIO SULLA STABILITA'

Abbiamo visto che, per quanto detto, *l'obiettivo primario da verificare e da raggiungere* in uno stadio selettivo è la sua stabilità di funzionamento (è inutile fare tanti calcoli se poi il sistema autooscilla e non funziona!).

Dobbiamo cioè costatare se è rispettata la (27) che qui riportiamo:

$$G_1 \cdot G_2 > |\overline{y}_{re} \cdot \overline{y}_{fe}|$$
 (27)

Verifichiamola quindi immediatamente in un caso pratico, con un esempio.

Utilizziamo, per il nostro scopo, un transistor al germanio AF121 di vecchia generazione, perché i suoi parametri Y hanno valore tale da far meglio *notare come siano rilevanti le difficoltà per raggiungere la stabilizzazione* di uno stadio ad amplificazione selettiva.

I dati di funzionamento alla frequenza fo=10MHz, ricavati dal manuale tecnico dell'aF121 (per un punto di lavoro già prescelto e non essenziale in questo momento), sono riportati nella tabella seguente:

fo = 10MHz, gie =
$$1.3 \cdot 10^{-3}$$
 A/V; goe = $13 \cdot 10^{-6}$ A/V; $|Y_{fe}| = 40 \cdot 10^{-6}$ A/V; $|Y_{fe}| = 70 \cdot 10^{-3}$ A

Tenendo in considerazione la **Fig.11** che rappresenta un classico esempio di amplificatore a banda stretta, supponiamo, per semplicità, che ambedue i circuiti risonanti abbiano delle resistenze dinamiche con un valore realistico pari a 10000Ω a cui corrispondono conduttanze dinamiche pari a:

$$g_1 = g_2 = 0,1 \cdot 10^{-3} \Omega^{-1}$$

Sommando rispettivamente tutte le conduttanze all'ingresso e all'uscita otteniamo i valori delle conduttanze totali d'ingresso e d'uscita:

$$G_1 = g_1 + g_{ie} = (0.1 + 1.3) \cdot 10^{-3} = 1.4 \cdot 10^{-3} \Omega^{-1}$$
;

$$G_2 = g_{oe} + g_2 = (0.013 + 0.1) \cdot 10^{-3} = 0.113 \cdot 10^{-3} \Omega^{-1}$$

Facciamo i prodotti che ci interessano:

$$G_1 \cdot G_2 = 0.16 \cdot 10^{-6} \Omega^{-2}$$
; $|Y_{re} \cdot Y_{fe}| = 2.8 \cdot 10^{-6} \Omega^{-2}$

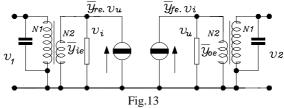
e vediamo che purtroppo abbiamo ottenuto il contrario di quanto desiderato, ossia risulta addirittura che, nella (27), il primo ternime è addiruttura molto minore del secondo:

$$G_1 \cdot G_2 << |Y_{re} \cdot Y_{fe}|$$

Il sistema, perciò, è assolutamente instabile.

Utilizziamo, allora, un accoppiamento a trasformatore, modificando il circuito della
Fig.11 nel circuito della Fig.12.

Si tenga conto inoltre della Fig.13, che rappresenta il circuito equivalente della Fig.12, dove vengono messi bene in evidenza i rapporti trasformatorici:



Con un rapporto spire, per es., di n=N1/N2=5 (ciò significa che per ogni 5 spire in un avvolgimento vi è una spira nell'altro) sia all'ingresso che all'uscita, si ottengono i seguenti valori, visti dai circuiti risonanti:

$$\begin{split} g_1' &= g_2' = 0, 1 \cdot 10^{-3} \cdot 5^2 = 0, 1 \cdot 10^{-3} \cdot 25 = 2, 5 \cdot 10^{-3} \Omega^{-1} ; \\ G_1 &= \left(1, 3 + 2, 5\right) \cdot 10^{-3} = 3, 8 \cdot 10^{-3} \Omega^{-1} \\ G_2 &= \left(0, 013 + 2, 5\right) \cdot 10^{-3} \cong 2, 5 \cdot 10^{-3} \Omega^{-1} \end{split}$$

Facciamo di nuovo i prodotti che ci interessano:

$$G_1 \cdot G_2 = 9.5 \cdot 10^{-6} \Omega^{-2}$$

e vediamo che ora la (27) è soddisfatta:

$$G_1 \cdot G_2 > |Y_{re} \cdot Y_{fe}|$$

quindi il sistema risulta sicuramente stabile. Quanto è costata, però,questa "Stabilizzazione"?

Calcoliamo il valore delle amplificazioni nei due casi.

 1^{o}) Caso. Senza trasformatori (Fig.11) ma senza la stabilizzazione dinamica di segnale. L'Amplificazione è altissima ma inutilizzabile perché lo stadio "autooscilla":

$$A_v = -\frac{\left|Y_{fe}\right|}{G_2} = -\frac{70 \cdot 10^{-3}}{0.113 \cdot 10^{-3}} = -619$$

(Il segno "-" ha il significato di rotazione di fase di 180°).

2°) Caso. Con trasformatori ma con stabilità di funzionamento. L'Amplificazione è:

$$A_v = -\frac{\left|Y_{fe}\right|}{G'^2} = -\frac{70 \cdot 10^{-3}}{2,5 \cdot 10^{-3}} = -28$$

Il metodo con accoppiamento a trasformatore ha ridotto drasticamente l'amplificazione ma ha stabilizzato il sistema. E'chiaro, adesso, perché bisogna prima di tutto controllare e realizzare la stabilizzazione dinamica, modificando fin dove è possibile i circuiti selettivi. Se poi sorgono troppe difficoltà allora è forse il caso di cambiare transistor.

Nella seconda parte applicheremo i concetti qui esposti e le relative formule in alcuni esercizi di progettazione e nella costruzione di alcuni prototipi che, tramite il loro funzionamento, daranno luogo ad ulteriori discussioni e approfondimenti.

Ortona, Giugno 2012

Nicola del Ciotto