The New Radio Receiver Building Handbook

And Related Radio Subjects

Vacuum Tube and Transistor

Shortwave Radio Receivers

by Lyle Russell Williams, BSEE

KC5KBG
Contents

Introduction: Who Builds Radios Today?

Chapter 1: Types of Receivers

Discussion of the Drawings of this Book
The Crystal Radio
The Regenerative Radio
The TRF Receiver
The Superheterodyne Receiver
The Super-regenerative Receiver
The Direct Conversion Receiver
Conclusion

Chapter 2: Types of Digital Receivers

Digitally Synthesized Analog Superhet
All Digital Receivers
Digital Modulation
Spread Spectrum

Chapter 3: Radio Services Currently Available

Long Wave
Medium Wave
Shortwave
FM Broadcast Band
Above 108 mHz
Internet Radio
Big Dish Satellite Radio
XM and Sirius Satellite Radio
Summary
Chapter 4: Old Regenerative Radio Circuits

The Grid Leak Detector
The Original Regenerative Radio
Frequency Dials
Spurious Radiation
DeForest Versus Armstrong
Passive and Active Regeneration Control
Problems Associated with the Regeneration Control
Regeneration Control Methods

Chapter 5: The New Regenerative Radio

Replacing the Tube in an Old Circuit With a Transistor
Regenerative Radio Configurations
Block Diagram for All Regenerative Radios
The Regenerative Amplifier
The Interim Amplifier
The AM Detector
The Audio Power Amplifier

Chapter 6: Other Circuits Using the Regenerative Principle

RF Oscillators
Rudimentary AM Transmitter
The Q-multiplier
The Regenerative IF Amplifier

Chapter 7: Mechanical Aspects of Radio Design

Breadboard Type of Radio Construction
Chassis Type of Construction
Printed Circuits
Prototyping Tube Circuits
Semiconductor Prototyping
Variable Capacitors
Mechanical Reduction Drives
Variometers and Other Inductors
Panels
Frequency Dials
Knobs and Pointers
Dial Lighting

Chapter 8: Vacuum Tube Radio Design and Components

Availability of Parts
Vacuum Tubes
Early Dry Battery Tubes
Indirectly Heated Cathode Tubes
Rectifier Tubes and Diodes
Transformers for Tube Designs
AC-DC Series String Radios

Chapter 9: Semiconductor Radio Design and Components

Bipolar and Field Effect Transistors
Integrated Circuits
Passive Components
Frequency Linearity of Tuning Circuits
Varactor Tuning Circuits

Chapter 10: Electronic Test Equipment

Inexpensive Testing
Personal Computers and Software
Pricing
Inexpensive Instruments
Calibration Standards
Chapter 11: Complete Receivers

The Ocean Hopper
The Space Spanner
The Globe-Span Modern Transistor/IC Regenerative Radio
Further Modifications and Improvements of the Transistor/IC Radio
Newly Designed Vacuum Tube Regenerative Radio
Tables, Drawings, and Photographs

Introduction:

Chapter 1: Types of Receivers

TABLES:

1-1 Frequency Ranges of the Shortwave Bands
1-2 Toroidal Inductor Winding Instructions for the Shortwave Broadcast Bands

FIGURES:

1-1A A Crystal Radio Schematic
1-1B A Home Constructed Crystal Radio
1-1C A Manufactured Crystal Radio
1-2 A Crystal Detector in a Holder
1-3A Voltage Versus Current (V-I) Characteristic of a Diode
1-3B How the Diode Characteristic Removes the Negative Half of a Signal
1-4 The Classical Illustration of the Detection of an AM Signal
1-5 A Grid Leak Detector
1-6 Regenerative Radio Similar to Armstrong’s Original
1-7 A Tuned Radio Frequency (TRF) Receiver
1-8A Block Diagram of a Superheterodyne Radio
1-8B Schematic Diagram of a Superheterodyne Receiver
1-9A A Super-regenerative Receiver
1-9B Output Waveforms of a Super-regenerative Receiver
1-10 Block Diagram of a Direct Conversion Receiver

Chapter 2: Digital Radio

2-1 A Digitally Synthesized Analog Receiver

7
Chapter 3: Radio Media

Chapter 4: Old Regenerative Designs

4-1 A Grid Leak Detector
4-2A The AM Input Signal to the Grid Leak Detector
4-2B The Signal at the Grid of the Grid Leak Detector
4-3 A Vacuum Diode AM Detector
4-4 The First Regenerative Detector
4-5 A “Log” Dial Used for Tuning
4-6 DeForest’s Regenerative Radio
4-7 Regeneration Control by Throttling Capacitor
4-8 Regeneration Control by Variable Resistor
4-9 Regeneration Control by Changing Plate Voltage
4-10 Regeneration Control by Changing the Screen Voltage
4-11 Regeneration Control by Changing the Control Grid Bias

Chapter 5: New Regenerative Radio Designs

5-1 Replacing the Vacuum Tube in an Antique Circuit with a JFET
5-2 An Alternate Method of Replacing a Tube with a JFET
5-3 Tickler Coil Regenerative Circuit
5-4 Tuned Collector (Tuned Plate) Regenerative Circuit
5-5 Pierce Regenerative Circuit
5-6 Hartley Regenerative Circuit
5-7 Colpitts Regenerative Circuit
5-8A Block Diagram of a Regenerative Receiver
5-8B Alternate Block Diagram for Tube Regenerative Receivers
5-9 A Colpitts Regenerative Amplifier
5-10 A Dual Gate MOSFET Colpitts Regenerative Amplifier
5-11 JFET Version of Colpitts Regenerative Amplifier
5-12 A Hartley Regenerative Amplifier
5-13 A Hartley Regenerative Amplifier with Buffer
5-14 An Interim Wide Band RF Amplifier
5-15 A High Gain Interim Audio Amplifier
5-16 Dual Triode Interim Audio Amplifier
5-17 Detector Used in Most Commercial AM Receivers
5-18A AM Detector For Use When Source is at Zero DC Offset Voltage
5-18B AM Detector That Works When There is a DC Component in the Input RF Signal
5-19 Non Loading Detector That Works With an Input DC Offset
5-20 An Integrated Circuit Audio Power Amplifier
5-21 A Vacuum Tube Power Amplifier

Chapter 6: Other Circuits Using the Regenerative Principle

6-1 A Tickler Coil RF Oscillator
6-2 A Low Power AM Transmitter
6-3 A Q-Multiplier Add On Circuit
6-4 A Regenerative IF Stage in a Superheterodyne Receiver

Chapter 7: Mechanical Aspects of Radio Design

7-1 An Example of Metal Chassis Construction
7-2 A Nibbling Tool and Several Chassis Punches
7-3 A Vacuum Tube Radio on a Printed Circuit Board
7-4A A Transistor and Integrated Circuit Printed Circuit Board
7-4B Underside of the Printed Circuit Board Before the Parts Are Inserted
7-5 A Transistor and IC Circuit Fabricated on Vector Board
7-6 Circuit Connections on a Spring Terminal Board
7-7 Variable Tuning Capacitors
7-8 A Variometer Inductor
7-9 Various Inductors
7-10 Tuning Dial For a Nine Band Variable Capacitor Tuned Receiver
7-11 Tuning Dial For a Six Band Varactor Tuned Receiver
7-12A Control Knobs
Chapter 8: Vacuum Tube Radio Design and Components

8-1 Octal Base and Miniature Glass Vacuum Tubes

Chapter 9: Semiconductor Design

9-1 Dial From a 1936 Philco Radio
9-2(A-D) Varactor Tuning Curves
9-3 Full Details of the Simplified Circuit of Figure 9-2D

Table 9-1 Changes In Tuning Capacitance Needed to Produce Equal Changes In Frequency

Chapter 10: Electronic Test Equipment

10-1 An Analog Volt-Ohm-Milliampere (VOM) Meter
10-2 A Digital Multi-Meter
10-3 A Circuit For Measuring an RF AC Signal on a DC Meter
10-4 A Digital Inductance-Capacitance-Resistance (LCR) Meter
10-5 An Audio Signal Generator
10-6 A Radio Frequency (RF) Generator
10-7 An Inexpensive Frequency Counter
10-8 A Homebuilt Crystal Controlled Marker Generator
10-9 A Noise Bridge For Measuring Impedance
10-10 An Oscilloscope

Chapter 11: Complete Receivers

11-1 The Ocean Hopper Radio Schematic
11-2 Three Views of the Ocean Hopper Radio
11-3 The Space Spanner Radio Schematic
11-4 The Space Spanner Radio
11-5 Schematic Diagram of Globe Span Receiver
- - - Parts list of the Globe Span Receiver
11-6A The Globe Span Radio Front View
11-6B The Globe-Span Radio Rear View

11-7 Full Scale Printed Circuit Foil Side Pattern for the Globe-Span Radio
11-8 Parts Placement Diagram for Printed Circuit in Figure 11-7
11-9 Front Panel of the Globe-Span Radio
11-10 Schematic of the Tube Regenerative Radio
11-11 The Vacuum Tube Regenerative Radio with Plug-in Coils